/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Deriving Strategy Pattern
From the principles...

AARHUS UNIVERSITET
« Customer — Alphatown county:
+ The pay station must;

/v Last — Alphatown county

— accept coins for payment
— show time bought

— print parking time receipts
— US: 2 minutes cost 5 cent
— handle buy and cancel

— maintenance (empty it)

CS@AU Henrik Beerbak Christensen 2

/v ReCap

AARHUS UNIVERSITET
 Where did we end with the PayStation?

* On the Backlog
— Cancel not implemented
— No validation of correct coin

Testlist for PayStation

» [OK] accept legal 5 cent coin
« [OK] 5c entered => 2 min displayed
» [OK] 10c enter => 4 min display

— No clearing after a buy » [OK] 5+10 cent => 6 min display
. « reject 17c
° BUt We dld » [OK] 25c buy => receipt of 10 min
— Addmg payment + [OK] 50c buy => receipt of 20 min

« cancel == 0 in display

— Buying a receipt

CS@AU Henrik Baerbak Christensen 3

/v Code View

AARHUS UNIVERSITET
 We got to a code base like

@0verride

public void addPayment(int coinValue) throws IllegalCoinException {
insertedSoFar += coinValue;
timeBought = insertedSoFar / 5 * 2;

}

 But would soon be at

@0verride
public void addPayment(int coinvalue) throws IllegalCoinException {
if (coinValue != 5 &% coinValue != 1@ && coinValue != 25)
throw new IllegalCoinException("Error adding payment: Illegal coin: " + coinValue);
insertedSoFar += coinValue;

timeBought = insertedSoFar / 5 % 2;

}

CS@AU Henrik Baerbak Christensen 4

/v The nightmare: Success!

AARHUS UNIVERSITET
« The Alphatown county Is very satisfied!

 Success is terrible!

* |t means:

* New requirements, add-ons, special cases and “wouldn’t
it be nice if...”

e SO0 — our parking machine software is now required by
the Betatown county — but with a twist ®

ot New requirement

AARHUS UNIVERSITET
» Betatown: “New progressive price model”

1. First hour: $1.50 (5 cent gives 2 minutes)

2. Second hour: $2.00 (5 cent gives 1.5 minutes)
M3 (] Stadt Fiissen

3. Third and following hours: $3.00 per hour (5 cent gives 1 minute) o !

« Maybe we will see future changes

et U
1 Stunde
2 Stunden

In pricing models ???

Mindestgebiihr
Héchstgebiihr:

Bei Stérung - Bitte Parkscheibe einlegen!
Bitte passend einwerfen.
Automat wechselt nicht!

« How can we handle these two
products?

/v The present code

AARHUS UNIVERSITET

* This Is the spot where things may change:
variability point

@0verride
public void addPayment(int coinValue) throws IllegalCoinException {
if (coinvalue != 5 && coinValue != 10 && coinValue != 25)
throw new IllegalCoinException("Error adding payment: Illegal coin: " + coinValue);
insertedSoFar += coinValue;
timeBought = insertedSoFar / 5 % 2;

¥

CS@AU Henrik Baerbak Christensen 7

eV Exercise !

AARHUS UNIVERSITET

* Propose some models to handle this issue

e Consider:

— Most of the code is the same in the
two products

— What about real success? 20
product variants?
 Focus:

— Sketch several models, not just an
“optimal” one.

— Read the book? Find a fifth model!

CS@AU Henrik Baerbak Christensen 8

/v Analysis

AARHUS UNIVERSITET

 Model 1:
— Source code copy proposal: Make a copy of the source tree

« Model 2:

— Parameterization proposal: Throw in some ‘if’-statements

* Model 3:
— Polymorphic proposal: Variation through inheritance

* Model 4:
— Compositional proposal: Factor out rate model responsibility

/v

AARHUS UNIVERSITET

Model 1: Source Code Copy

Widely used: Next generation software

/v Model 1: Source tree copying

AARHUS UNIVERSITET

 |dea: Deep copy production code source tree

=) alphatown =) alphatown
) pavstation) pavystation
) utils = 1) betatown
If:_] pavysktation
I utils

« Code the new variant by replacing
the code at the variability point.

id addPayment(int coinvalue) throws IllegalCoinException {
if (coinvalue != 5 && coinValue != 18 &k coinValue != 25)
throw new egalCoinEx n("Error adding payment: Illegal coin:

ineertedSaFar 4= coinualue:
| tineBought = insertedSoFar / 5 * 2;
s

CS@AU Henrik Baerbak Christensen 11

/v Benefits

AARHUS UNIVERSITET
* Benefits:
— Itis simple!

» no special skill set required in developer team
» easy to explain idea to new developers
— ltis fast!
* <5 minutes?
— It provides perfect variant decoupling
 defects introduced in variant 2 does not reduce reliability of variant 1
 easy to distinguish variants (consult folder hierarchy)

/v Liabilities
AARHUS UNIVERSITET
 Liabllities:
« Multiple maintenance problem &
— Changes in common code must be propagated to all copies
— Usually manual process (or tedious SCM operation)

Override
public woid addPayment(int coinValue) throws IllegalCoinException { Ident|ca| COde Cop|e5!
if (coinvalue != 5 && coinValue != 18 && coinValue != 25)
throw new IllegalCoinException("Error adding payment: Tl'legal‘cnin: " + coinValue]; Bugs here must be flxed |n
insertedSnFar &= eninyalue:
timeBought = insertedSoFar / 5 * 2; N d|fferent places! !!
override

public void addPayment(int coinvalue) throws IllegalCoinException {
if (coinValue != 5 && coinvalue != 18 && coinValuwe != 25)
throw new IllegaltqinExceptian["Frrnr adding payment: Illegal coin: * + l:-uj,nlul'a‘l.ue:l;
tbsertedobac 4o CodoNaILe .
New code Arpo

CS@AU Henrik Baerbak Christensen 13

/v Liabilities
AARHUS UNIVERSITET
 Liabilities:
« Multiple maintenance problem &%
— Changes in common code must be propagated to all copies
— Usually manual process (or tedious SCM operation)

 Example:
— 8 pay station variants (different rate policies)
— request: pay station keeps track of earning ®

« EXxperience: Variants drift apart, becoming different
products instead of variants...

/v Liabilities
AARHUS UNIVERSITET
 If you have many copies you easily get mixed up

— thus the benefit of easily identifying which variant you are working
on is actually not true

 Example:

— Fixing the same bug in 5 nearly identical SAVOS production code
bases at the same time ®

/v

AARHUS UNIVERSITET

Model 2: Parametric Solution

Perhaps the most Common in the book

eV Parametric

AARHUS UNIVERSITET
 |dea:
— ltis only a single “behavioural unit” in the addPayment method
that Varies public void addPayment(int coinValue) throws IllegalCoinException {
e st i o D
| timeBought = insertedSeFar [5 & 3:|

— | can simply make a conditional statement there

e A) Introduce a parameter (Which town are we in?)

« B) Switch on that parameter, each time town specific
behaviour is needed.

CS@AU Henrik Baerbak Christensen

17

/v

AARHUS UNIVERSITET

public class PayStationImpl implements PayStation |
[...]

public enum Town { ALPHATOWN, BETATOWN }
private Town town;

Code View

public PayStationImpl (Town town) {
this.town = town;

public void addPayment (int coinValue)
Loosl throws IllegalCoinException {
} switch (coinValue) {
case 5:
case 10:
case 25: break;
default:
throw new IllegalCoinException("Invalid coin: "+coinValue);
}
SIS T s L) t‘n“ — a2 1T 'Inn'-
if (town == Town.ALPHATOWN) {
timeBought = insertedSoFar = 2 / 5;
} else if (town == Town.BETATOWN) {
[the progressive rate policy code]

CS@AU Henrik Baerbak Christensen 18

V4V Instantiation

AARHUS UNIVERSITET

« Of course — we now have to specify which variant of the
pay station to use
— Either AlphaTown or BetaTown

« Defined by the constructor parameters:
— Here for ‘AlphaTown’

public void setUp() {
ps = new PayStationImpl (PayStationImpl.Town.ALPHATOWN) ;

}

CS@AU Henrik Baerbak Christensen 19

/v

AARHUS UNIVERSITET

 Benefits:
— Simple

Benefits

» A conditional statement is one of the first aspects learned by

programmers, used widely, and thus easy to understand for any skill
level developer team

— Avoid multiple maintenance problem
* Yeah!!! Common defects/requirements are handled once and for all.

public void addPayment (int coinValue)
throws IllegalCoinException ({
switch (coinValue) {
case 5:
case 10:

case 25: break;
default:
throw new IllegalCoinException("Invalid coin:

}

insertedSoFar += coinValue;

if (town == Town.ALPHATOWN) {
timeBought = insertedSoFar » 2 / 5;

} else if (town == Town.BETATOWN) {
[the progressive rate policy code]

}
}

CS@AU Henrik Baerbak Christensen 20

"+coinValue);

/v

AARHUS UNIVERSITET
 Liabilities:

CS@AU

Reliability concerns

Readability concerns

Responsibility erosion

Composition problem

Henrik Baerbak Christensen

Liabilities

21

/v

AARHUS UNIVERSITET

* Reliability/quality problem

— Each time we must add a new rate model (sell in a new town) we
must add code to the existing PayStationimpl class.

[...]

if (town == Town.ALPHATOWN) {
timeBought = insertedSoFar * 2 / 5;

} elsae if (town == Town.BETATOWN) {
[BetaTown implemepntationl

} else if (town == Town.GAMMATOWN) |
[GammaTown implementation]

!

Analysis

— This means potential of introducing errors in old code.

— This means complete regression testing (and test case review) of
all product variants!

— Change by modification is costly !!!

CS@AU Henrik Baerbak Christensen 22

\ 4
AARHUS UNIVERSITET

* Reliability/quality problem

Actually our pay station case is the easiest one: only one ‘switch’!

— Consider a big system in which there are 83 places where we
switch on the town parameter i oo

Bought - insertedSoFar x 2 / 5;
timeBought = insertedSoFar x 2 / 5; if (town == Town.ALPHATOWN) { if (town — Town.BETATOWN) {
} else if (town == Town.BETATOWN) { timeBought = insertedSoFar 2 / 5;

o aTown implementation]
- [BetaTown implementation] } else if (town == Town.BETATOWN) { if (town == Town.GAMMATOWN) {
« Or—was it 84 places ??? R P

Analysis

maTown implementation]
[GanmaTown; ¢ (toun == Town.ALPHATOWN) (I CLED &858 (e = W[y,)
} timeBought = insertedSoFar » 2 / 5 [GammaTown implemers ¢’ (town == Town.ALPHATOWN) {
} else if (town == Town.BETATOWN) { ! timeBought = insertedSoFar = 2 / 5;
[BetaTown implementation]) else if (town == Town.BETATOWN) {
) else if (town — Town.GAMMATOWN) [BetaTown implementation]
[e e :|) [GammaTown implementation] if (town == e namEae else if (town == Town.GAMMATOWN) {

ammaTown implementation
timeBought = insertec i ® !

} else if (town == Towr’
Town.ALPHATOWN) { Lo i e

if (town

if (town == Town.ALPHATOWN) { } else if (town == Town.GAMMATOWN) {
L] . timeBought - insertedSoFar « 2 / [GammaTown implementation]
timeBought = insertedSoFar 2 / 5;) alse if (coun = Town.BETATOMY)
F [BetaTown implementation] [...1

- else if (town == Town.GAMMATOWN) { if V(towr- == Town.ALPHATOWN) {
} else if (town == Town.BETATOWN) ({ (Gamnatoun saplonentacion] ..

timeBought = insertedSoFar x 2 / 5;

if (town == Town.ALPHATOWN) { } else if (town == Town.BETATOWN) {
timeBought = insertedSoFar 2 / 5; Estetiern Smpllemerbelileny)
[BetaTown implementation] [else it e — TounsEmrom) (G tetenentation
. , e
if (town == Town.ALPHATOWN) ([BetaTown implementation]

} else if (town

wn == Town.G . }
timeBought = insertedSoFar *) else lf (town : TO:Jn;uAM.MATOWI\D {
Town.GAMMATOWN) { i T T e
= [BetaTown implementation] !

if (town == Town.ALPHATOWN) {
- - Qi L (fEerm == wemmeEEEEOIL) timeBought = insertedSoFar » 2 / 5;
[GammaTown imp lementation] ST S e) else if (town — Town.BETATONN) (
} [BetaTown implementation]
} else if (town == Town.GAMMATOWN) { own.ALPHATOWN) {
} [. [GammaTown implementation] sertedSoFar « 2 / 5;
if (town == Town.ALPHATOWN) { } wn == Town.BETATOWN) |{
timeBought = insertedSoFar = 2 / 5;

} else if (town

i o [BetaTown implementation]
Toun BETATONN) } else if (town == Town.GAMMATOWN) (
[BetaTown implementation]

" . [GammaTown implementation]
o o - - } else if (town Town.GAMMATOWN) {)
Change by modification is costly !!!
LI }

[did a count on release 4.1.1 of GCC and there are a total of 4079 lines with an

#ifdef in the source code. The HAVE_cc0 alone is switched upon in 83 places in 22
CS@AU different source files.

/v Analysis

AARHUS UNIVERSITET
 Readability: Code bloat

— If we must handle 43 different price models, then the
switching code becomes long and winding, and the original
algorithm almost drowns...

« Switch creep
— Throwing in “if” often leads to more “if’

if (Town == ALPHATOWN) {
if (databaseServer == ORACLE && optimizingOn) {
if (DEBUG) { System.out.println(“...”); 1}

} eiéé { if (isMobilePayment ()) {

discountFactor = 0.9;
XXX
} else { ... }

CS@AU Henrik Beerbak Christensen 24

/v Analysis

AARHUS UNIVERSITET

* Responsibility erosion (“feature creep”)

— Let us review what the responsibilities of the pay station really are
Now:

<<interface>>

PayStation

Responsibility
Accept payment
Handle transactions

Know time bought
Print receipt AntiPattern: The Blob

bR

5. Handle variations for Alphatown and Betatown

CS@AU Henrik Beerbak Christensen 25

- Feature Creep Visually ©

AARHUS UNIVERSITET

"} Document1 - Microsoft Word

Type a quaston for

= Not much room down here_[

CS@AU Henrik Beerbak Christensen

26

/v

Feature Creep Visually ©
AARHUS UNIVERSITET

Type a gueston for

- = pal dwimroc 301z

= Not much room down here__

Wirth's law is an adage on computer performance which states that
software is getting slower more rapidly than hardware is becoming faster.

The adage is named after Niklaus Wirth, a computer scientist who discussed
it in his 1995 article "A Plea for Lean Software" [1][]

CS@AU Henrik Beerbak Christensen 27

/v

AARHUS UNIVERSITET
« Composition problem

Analysis

— Arate model that is a combination of existing ones leads to code

duplication [can be avoided by making private methods in the
class]

— Example of much worse situation will be dealt with later...

/v Conditional compilation

AARHUS UNIVERSITET
* In C and C++ you may alternatively use #ifdef’'s

« The analysis is basically the same as for
parameterization, except that there is no performance
penalty --- but choice of which model to be used cannot
be made at run-time.

CS@AU Henrik Beerbak Christensen 29

\ 4
AARHUS UNIVERSITET

J/* Main.cpp */
#:anlude “’_Bﬁs.‘l.::Engtlonallty hpp"
"#lfdef HAE ADVRANCED FEATURE ——

#include "AdvancedFuncticnality.hpp”

aﬂﬁg_gdif —
Void main (void)
{
BaslcFunctlonallt:g GSc:mEthln ();

,#deef HRS ADVANCED FEATURE
LdvancedFunctionality: :doSomething() ;

“~4ia_1;1d1f
If (BaSlCFu_'ﬂCtanallt}f :ge tCondltlon{)

—H#fTdet H.?—Lg _ADWVANCED FEATURE -

AdvancedFunctionality::getCondition()
—gendif

false]

Printf ("Condition present”);

[Include-niveau J

Example

>(..f—"* Funktions-niveau J

—

__ ————_ Kode-niveau
B B

CS@AU Henrik Baerbak Christensen

-

™

30

Y Example

AARHUS UNIVERSITET

« Data from “"reality”

— 600.000 lines of C++

 1.300 classes
o 2.400 files

— 60.000 staff-days for development
— 3 sites of development

« 432 parameters ("compile-flags™) must be set to
determine the specific variant of the product
— All defined in a make-file (~ build.gradle)

/v Model 2: Summary

AARHUS UNIVERSITET
e Itis tempting!

— itis easy - ¥2 minute in the editor, compile, done!
— the first ‘if’ is easy to overview, understand, and get correct

— but it should turn on the alarm bell !

CS@AU Henrik Baerbak Christensen 32

/v

AARHUS UNIVERSITET

Model 3: Polymorphic Solution

Still widely used, but...

Give a man a hammer and the world
will seem to consist purely of nails...

/v

AARHUS UNIVERSITET
Subclass and override!

public void addPayment(int coinValue)

Model 3: Polymorphic

«interface»
PayStation

throws IllegalCoinException |

switch (coinValue) |{
case b5:

< F---A

PayStationlmpl

calculateTime(amount)

case 10:
case 25: break;
default:
throw new IllegalCoinException("Invalid coin: "+coinValue);
}
insertedSoFar += coinValue:
timeBought = calculateTime (insertedSoFar);
I
/** calculate the parking time equivalent to the amounjfof
cents paid so far
@param paidSoFar the amount of cents paid so fq
@return the parking time this amount qualifjeg
::-/

protected int calculateTime(int paidSoFar) |

}

return paidSoFar = 2 / 5;

proposal

PayStationProgressiveRate

calculateTime(amount)

34

/v

AARHUS UNIVERSITET

time = 120
= if [pais

r
L

return time;

CS@AU

Proposal 3: Polymorphic

+ paidSoFar f

. g)
: >= 150) {

aidSoFar *

Instantiation:
PayStation ps =
new PayStationProgressiveRate() ;

Henrik Baerbak Christensen

35

/v Formulation using abstract

AARHUS UNIVERSITET

* In OO languages like Java, you can make a ‘template’
superclass, an abstract class, deferring method
Implementations to the subclasses

winterface»
PayStation

<{ PayStationimpl

calculateTime(amount) ‘

PayStationLinearRate PayStationProgressiveRate

calculateTime(amount) calculateTime(amount)

CS@AU Henrik Baerbak Christensen 36

/v Code View

public abstract la stationAbstract implements PayStation

private int 1ns

throw new Illec
+ coinValue);

1
I

insertedSoFar += coinValue;

timeBought = calculateTime(insertedSoFar);
1
I

. abstract int calculateTime(int paidSoFar);

, abstract tells us that some
ublic int readDisplay() { methods needs to be defined
: return timeBought; in the subclass.

You cannot make an instance
of an abstract class!

CS@AU Henrik Baerbak Christensen 37

/v

AARHUS UNIVERSITET

public class PayStationlLinea
@verride
int calculateTime(int paid
return paidSoFar / 5 * 2
}
}

pro
1
i

BetaTown =

Progressive ;

}
-
}
t

CS@AU

Code View

r extends PayStationAbstract {

SoFar) { AlphaTown = Linear

rerride

tected int calculateTime(int paidSoFar) {
nt time = 8;

f (paidSoFar >= 150+200) { // from 2nd ho
paidSoFar -= 350;

time = 120 + paidSoFar / 5;

else if (paidSoFar >= 150) { //
paidSoFar -= 150;

time = 60 + paidSoFar *3 / 10;

else { // up to first hour

time = paidSoFar / 2 * 5;

eturn time:

Henrik Baerbak Christensen

38

eV Exercise

AARHUS UNIVERSITET
 Why is it not possible to make an instance of an abstract
class?

Ny

B ublic void cannotBeDone() {
ps = new PayStationAbstract();

I

'PayStationAbstract’ is abstract; cannot be instantiated

Implement methods More actions

paystation.domain

public abstract class PayStationAbstract
implements PayStation

paystation-abstract-class.main

CS@AU Henrik Baerbak Christensen 39

/v

AARHUS UNIVERSITET

Analysis

Pros and Cons of
Inheritance based design of
our variable pricing

/v Analysis

AARHUS UNIVERSITET

» Benefits
— Avoid multiple maintenance
— Reliability concern
— Code readability

« Liabilities
— Increased number of classes
— Inheritance relation spent on single variation type
— Reuse across variants difficult
— Compile-time binding

/v Benefits

AARHUS UNIVERSITET

« © Reliability concern

— The first time | add a new rate policy | change by modification!

| have to refactor the code to introduce the new private method
calculateTime

e But

— All following new requirements regarding rate policies can be
handled by adding new subclasses, not by modifying existing
classes.

— Thus, no fear of introducing defects in existing software; no
regression testing, no reviews.

CS@AU Henrik Baerbak Christensen 42

/v Benefits

AARHUS UNIVERSITET
« © Readability

— There is no code bloating from introduction conditional
statements

— | simply add new classes instead

CS@AU Henrik Baerbak Christensen 43

/v Liabilities
AARHUS UNIVERSITET

 ® Increased number of classes
— | have to add one new class for each rate policy variant

— thus instead of 43 if statements in one class | get 43 subclasses
to overview

/v Liabilities

AARHUS UNIVERSITET

« ® Spent inheritance on single variation type

— You have “wasted” your single implementation-inheritance
capability on one type of variation!

public class PayStationProgressiveBRate extends PayStationImpl

 The name is odd — isn’t it? The parameter is part of the name
“PayStationProgressiveRate”

 What is next:

» “PayStationProgressiveRateButLiniarinWeekendsWithOracleDataBa
seAccessDebuggingVersionAndBothCoinAndMobilePayPaymentAnd
EasyParkOptions” ???

— We will discuss this problem in detail later...

CS@AU Henrik Baerbak Christensen 45

Y Liabilities
AARHUS UNIVERSITET
@ Inheritance is a compile time binding

— Inheritance is a compile time binding !!!
ou—editor !!!

* you literally write “extends / :" in your-edi

public class PayStationlLineal extends ayStationAbstract {
) —

— Thus you cannot change rate model except by rewriting code!
« Sorts of similar to “change by modification ©”

— And it is completely impossible to dynamically change rate policy
at run-time or at start-up time.

CS@AU Henrik Baerbak Christensen 46

eV Liabilities
AARHUS UNIVERSITET
« @® Reuse across variants is difficult

— Gammatown

« “We want a rate policy similar to Alphatown during weekdays but
similar to Betatown during weekends.”

— but some code is in one superclass and some in another
subclass...

— combining them will lead to a pretty odd design

— or | have to refactor into an abstract superclass that contains the
rate policies... But what do they do there?

/v

AARHUS UNIVERSITET

Model 5: Generative Solution

The masked ‘source code copy’
approach

/v

AARHUS UNIVERSITET

 Source code divided into
— Template code with “holes”

— Code fragments that fit the holes
» A set defined by the fragments that define a variant

Weaving

« Weaving
— Merge(template, fragment set) => source
 Now you can compile the variant source code.

 Example: FMPP used in generating source code for the
book in two variants: download or in-book listings

Example: PayStation.java

/%% The business logic of a Parking Pay Station.

AARHUS UNIVERSITET

Responsibilities:

A ”h0|e” ;; Accept payment:

Calculate parking time based on pavment;
3) Enow earning, parking time bought:

4) Issue receipts;

5) Handle buy and cancel events.

This source code is from the book
"Flexible, Reliable Software:

f** S{paystationClassHeadline}

- v == W " Using Patterns and Agile Development™
<#lf = = code"> published 2010 by CRC Press.
Author:
g - = = = = = Henrik B Chriscter T
<#include "/data/pavstation/class-responsikbilities.txt"> cnEe nristensen

Computer Science Department
Rarhus University
: . " ut] "
<#include "/data/author.txt"> This source code is provided WITHOUT ANY WARRANTY either
e/ ELiES expressed or implied. You may sctudy, use, modify, and
distribute it for non-commercial purposes. For any
=/ commercial use, see htop://www.basrbak.com/
public interface PayStation { o)
public interface PayStation (

ey ’”

* Insert coin into the pay station and adjust state accordingly.

<#include "/data/pavstation/addPayment-specification.txtc"> * @param coinValue is an integer value representing the coin in
- # cent. That is, a guarter is coinValue=25, etc.
"'Ir * @throws IllegalCoinException in case coinValue is not
public woid addPayment (int coinValue)} throws IllegalCoinException; "/é walid coin valus
public wvoid addPayment (int coinValue)} throws IllegalCoinException;

S
<#include "/data/paystation/readDisplay—-specification.txc™> P —
*f
public int readDisplayv ()

/%% The business logic of a Parking Pay Station.
T s
L . . . public interface PayStation {
<#include "/data/paystation/buy-specification.t=xtc™>
*f S

public Receipt buy () : * Insert coin into the pay station and adjust state accordingly.
@param coinValue is an integer value representing the coin in
cent. That is, a quarter is coinValue=25, etc.

J,-‘xx * @throws IllegalCoinException in case coinValue is not
L R e - * a wvalid coin value
<#include "/data/pavstation/cancel-specification.txt™> y
=/ public void addPayment(int coinValue)} throws IllegalCoinException;
public woid cancel () ; ,
¥

* Read the machine's display. The display shows a numerical

* description of the amount of parking time accumulated so far
* based on inserted pavment.

* @return the number to display on the pay station displaw

=/
public int readDisplav();

o

* Buy parking time. Terminate the ongoing transaction and

* return a parking receipt. & non-null object is always returned.
= @Breturn a wvalid parking receipt object.

CS@AU Henrik Baerbak Christensen 50

/v Weaving

AARHUS UNIVERSITET

« Examples
— Maven archetype

— AspectJ — aspect oriented programming
— FMPP that handles aspects of my book’s code

— SpecFlow: BDD framework

/v My experience
AARHUS UNIVERSITET
* This type systems pops up again and again
— Maven archtype is the newest | know of...
» |tis basically source-code-copy over again
— But with some tooling support to avoid multiple maintenance problem

* However
— It stinks! Why?
— Because the executing code differs from what | see in my editor!
« We short-circuit our power of reasoning => BUGS!
— Morale: Avoid it if possible...

— But it is not always possible.

» | use it for my book’s code — | have no other option (except manual source code copy —
yikes...)

/v

AARHUS UNIVERSITET

Exercise Break

Before we go into model 4

eV Exercise 1

AARHUS UNIVERSITET
« Which variability technique is used here?

/=x calculate a formatted 10 minute mean string to insert into a
* specific meterological report and calculated according to
* national algorithms. =/
public String calculateFormatted10OMinWind(int[] datavalues,
int algorithmType) {
int meanSpeed = 7, meanDirection = 234; // fake—it

boolean vrb = false; [/ fake—it
switch (algorithmType) {
case DANISH:

/* calculate means speed, direction , and vrb condition according
to Danish regulations (omitted) =/

break;
case FRENCH: /+ French algorithm (omitted) =/ break;
case GERMAN: /x German algorithm (omitted) =/ break;

f

return format(meanSpeed, meanDirection,vrb); Polymorphic?
- : S . * Parametric?
Both?

CS@AU Henrik Baerbak Christensen 54

public‘ abstract class CoolingFanControlB
public static void main(5tring args[])

CoolingFanControlB ctrl = new CoolingFanControl _LED_Phillips(); .
ctrl. controlTemperature (); X e r C I S e

/%% The main controller loop: read sensor and control fan.
*
/
public void controlTemperature() {
while (true) {
double reading = readTemperature ();
double fanFrequency = controlAlgorithm(reading);
displayFrequency(fanFrequency);

) [/ [control the cooling fan] i Afrldge readS
}.;lb-stract void displayFrequency(double f); temperature and

abstract double readTemperature ();

double controlAlgorithm(double T) { dlsplays

/# [calculate frequence based on T] */

\ return 250.0; // Fake'it frequency Of fan
« Variability

}

class CoolingFanControl LED _Philips extends CoolingFanControlB {
void displayFrequency(double f) {

/+ [Turn off all LEDs] =/ — Temp sensor
if (f< 100) /+ [LowSpeedLED . turnOn ()] %/ }
if (f>= 100 && f < 500) /* [MediumSpeedLED . turnOn ()] =/ } type
if (f >= 500) { /* [HighSpeedLED.turnOn ()] =/ }
iiouble readTemperature () { - DISplay type

double reading; // the temperature measured, assigned i
[+ [measure temperature using PHILIPS sensor] =/;
return reading;

}

Parametric? Polymorphic?

’ Both?

CS@AU Henrik Baerb

/v

AARHUS UNIVERSITET

Model 4: Compositional Solution

A fresh and new look at the problem

/v

AARHUS UNIVERSITET

Proposal 4. Composition

PayStation

e Accept payment

Calculate parking time based on payment
Know earning, parking time bought

Print receipts

L
L
L
e Handle buy and cancel transactions

Golden rule: No abstraction should have too many
responsibilities. Max three is a good rule of thumb...

(Facade objects are an exception)

/v Serving too many responsibilities

AARHUS UNIVERSITET

« The reason that we have to modify code to handle the
new requirement instead of adding code is because:

e So: What do we do???

CS@AU Henrik Baerbak Christensen 58

/v Divide responsibilities - compose them
AARHUS UNIVERSITET

« Aproposal is simply to

«interface»

PayStation «interface»
-- Responsibilities: RateStrategy
Accept payment <>

-- Responsibilities

Know earning, time bought Calculate parking time

Print receipts
Handle buy and cancel

CS@AU Henrik Beerbak Christensen 59

/v Delegation

AARHUS UNIVERSITET

The basic principle is simple but powerful:

— Instead of one object doing it all by itself, it asks
another object to help out. Some of the job is handled
by another “actor” — the delegate

This principle has a name.:

Detfinition: Delegation

In delegation, two objects collaborate to satisfy a request or fulfill a re-
sponsibility. The behavior of the receiving object is partially handled by
a subordinate object, called the delegate.

V4V Concrete behaviours

AARHUS UNIVERSITET
« Responsibilities must be served by concrete behaviour In
objects...
«interface» «interface»
PayStation RateStrategy

v
e \\
< ~
4 ~
s ~

LinearRateStrategy ProgressiveRateStrategy

CS@AU Henrik Baerbak Christensen 61

/v Code View

AARHUS UNIVERSITET

public class PayStationIlmpl implements PayStation {
private int inserted5SoFar;

private int timeBought;

f*= the strategy for rate calculations =/
private RateStrategy rateStrategy;

and modify the addPayment method:

public void addPayment(int coinValue) throws IllegalCoinException {
switch (coinValue) {
case 5:
case 10:
case 25: brealk:
default:

throw new IllegalCoinException(”Invalid _coin: . "+coinValue+"_cent.”);

insertedSoFar += coinValue :
timeBought = rateStrategy.calculateTime (inserted5oFar);

CS@AU Henrik Baerbak Christensen 62

eV Behaviour

AARHUS UNIVERSITET

5d insert coin

Ml 10N I (%] 1 lnlropl L IMmeEr i

insart coin
9 > addPayment

cabculateTime
tirme

updateDisplay

readDisplay

read

CS@AU Henrik Baerbak Christensen 63

eV Exercise

AARHUS UNIVERSITET

« The pay station needs to know which rate strategy object
to use, of course!

« How do we tell it ??7?

CS@AU Henrik Baerbak Christensen 64

/v Choosing pricing

AARHUS UNIVERSITET
« Several possibilities

— Constructor

— Set-method

F*% the strategy for rate calculaticns *7
private RateStrategy rateStrategv:

S** Construct a pay statiocn instance with the given
rate calculation strategy.
fparam rateStrategy the rate calculation strategy to

&

public PayStationlImpl{ RateStrategy rateStrategy) |
this.rateStrategy = rateiStrategy:r

}

CS@AU Henrik Baerbak Christensen

65

/v

AARHUS UNIVERSITET
What are the benefits and liabilities of

— Using the constructor to define the strategy?

— Using a set-method to define the strategy?

CS@AU Henrik Baerbak Christensen

Exercise

66

/v Analysis

AARHUS UNIVERSITET

e Constructor

— Compiler will tell you that you have forgotten to make it!
* Much less cost than letting the customer find out !!!

— Early binding that cannot be changed at run-time

« Set-method
— You will forget to set it !!!

— ... but you can change your mind at run-time !
 (at least for stateless objects like strategy objects...)

o Analysis
AARHUS UNIVERSITET
* Benefits
— Readability
— Run-time binding
— Separation of responsibilities
— Variant selection is localized
— Combinatorial
« Liabilities
— Increased number of interfaces, objects
— Clients must be aware of strategies

/v Analysis

AARHUS UNIVERSITET

« © Readability

— Nno code bloat of conditional statements

J
insertedSoFar += coinValue;
timeBought = rateStrategy.calculateTime (insertedSoFar);

}

« © Run-time binding
— | can actually change the rate policy while the system is

running. Leads to lower maintenance costs as no shut down
required

CS@AU Henrik Baerbak Christensen 69

/v Benefits

AARHUS UNIVERSITET

« © Responsibilities clearly stated in interfaces
— Leads to No Odd Naming:
— PayStation and RateStrategy: The responsibilities

— LinearRateStrategy ect: Concrete behaviour fulfilling
responsibilities

— The pay station has “lost some fat”

» by separating responsibilities the cohesion of the code within each
abstraction is higher

* Note though that from the GUIl/hardware’s perspective, the pay
station still has the ‘formal’ responsibility to calculate rates!

/v Benefits

AARHUS UNIVERSITET

« © Variant selection localized

— There is only one place in the code where | decide which rate
policy to take

« namely in the configuration/main code where | instantiate the pay
station!

— contrast to the parametric solution where selection and decision
code is smeared all over the place

— No variant handling code at all in the pay station code !

/v Benefits

AARHUS UNIVERSITET
e © Combinatorial

— | have not used inheritance — we can still subclass it to provide
new behavior on other aspects — without interfering with the rate

calculation!

— But — much more on that later...

/v Liabilities
AARHUS UNIVERSITET

* Increased number of objects

— Similar to the polymorphic solution you ‘trade’ complexity within
the code (many if’'s handling variants) with complexity outside the
code

» Instead you have many RateStrategy implementations to overview

« Clients must be aware of strategies
— Never ever instantiate the strategies within the Context object
(here the PayStationimpl)
* (Argue why it has all the liabilities of the parametric approach!)

— Thus the client (the one instantiating the Context) must be aware
of the particular strategy object to pass to the Context

* Thus, this code creates a hard binding between the two...

/v

AARHUS UNIVERSITET

The 3-1-2 process

eV So — Pizza from the ingredients ©
AARHUS UNIVERSITET

« O We have identified some behavior that is likely to
change...
— rate policies

« O We have clearly stated a responsibility that covers this
behavior and expressed it in an interface:

<<interface>>

RateStrategy

-- Calculate Parkingtime

« @ The parking machine now perform rate calculations by
letting a delegate object do it: the RateStrategy object.
— time = rateStrategy.calculateTime(amount);

/v The 3-1-2 process

AARHUS UNIVERSITET

| call this “mini-process” of handling variability for the 3-1-
2 process

« The reason for the odd numbering is its relations to the
compositional design principles that were first put forward
In the Design Pattern book (GoF) by Gamma et al. /
Chapter 1.6

 The number refer to the sequence in the GoF book that
the principle is mentioned.

eV Transferring responsibilities

AARHUS UNIVERSITET
« Actually this iIs a common thing in everyday life

Many years ago | transferred the responsibility to empty
the garbage can to my eldest son
— (not without some heated arguments though ©)

| delegate correcting HotStone exercises to my TAs

Project leaders’ main responsibility is — to delegate
responsibility to other people

And why? Because
— A) we cannot do everything ourselves and
— B) too many responsibilities leads to stress and errors!

/v Key technique: Delegation

AARHUS UNIVERSITET

 In software this simple technique “let someone else do
the dirty job” is called delegation.

* Instead of an object doing it itself:
— time = this.calculateTime(amount);
— this.takeGarbageToGarbageCan();
« we let some specialist object do it for us:

— time = rateStrategy.calculateTime(amount);
— son.takeGarbageToGarbageCan();

\ 4
AARHUS UNIVERSITET

 We have derived
the strategy pattern
by analysing
our problem in a
certain way!

CS@AU

Intent

Problem

Solution

Structure:

Conclusion

[7.1] Design Pattern: Strategy

Define a family of business rules or algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the algorithms vary in-
dependently from clients that use it.

Your product must support variable algorithms or business rules and
you want a flexible and reliable way of controlling the variability.

Separate the selection of algorithm from its implementation by express-
ing the algorithm’s responsibilities in an interface and let each imple-
mentation of the algorithm realize this interface.

«interface»

Context e S"atEgY

algorithminterface()

A

I

I

[-
1

1

7 %

- o

- ~
” ~

ConcreteStrategyA ConcreteStrategyB

Client

Roles

Cost -
Benefit

algorithminterface() algorithminterface()

Strategy specifies the responsibility and interface of the algorithm.
ConcreteStrategies defines concrete behavior fulfilling the responsibil-
ity. Context performs its work for Client by delegating to an instance

of type Strategy.

The benefits are: Strategies eliminate conditional statements. It is an alter-
native to subclassing. It facilitates separate testing of Context and Con-
creteStrategy. Strategies may be changed at run-time (if they are state-
less).

The liabilities are: Increased number of objects. Clients must be aware of
strategies.

Henrik Baerbak Christensen 79

/v

AARHUS UNIVERSITET

Terminology

« Strategy defines three roles:
* Client, Context and Strategy

e —. .

S — N

= / «interface»
< Context 9 Strategy
~— — \ algorithminterface()

S~ -~
/j .

| b .
| P .
(- 3 cUncretEStratEQYA COnCrEtEStratngB

~—_ algorithminterface() algorithminterface()

Y Summary

AARHUS UNIVERSITET

 From the ingredients
— @ identified behaviour likely to change
— @ express responsibility for behaviour as interfaces
— @ use delegation to support behaviour

« we have derived a pattern automagically ©

« This is the nuts and bolts for most (behavioural) patterns !

CS@AU Henrik Baerbak Christensen 81

