
Software Engineering

and Architecture

Deriving Strategy Pattern

From the principles…

Last – Alphatown county

• Customer – Alphatown county:

• The pay station must:

– accept coins for payment

– show time bought

– print parking time receipts

– US: 2 minutes cost 5 cent

– handle buy and cancel

– maintenance (empty it)

CS@AU Henrik Bærbak Christensen 2

ReCap

• Where did we end with the PayStation?

• On the Backlog

– Cancel not implemented

– No validation of correct coin

– No clearing after a buy

• But we did

– Adding payment

– Buying a receipt

CS@AU Henrik Bærbak Christensen 3

Code View

• We got to a code base like

• But would soon be at

CS@AU Henrik Bærbak Christensen 4

The nightmare: Success!

• The Alphatown county is very satisfied!

• Success is terrible!

• It means:

• New requirements, add-ons, special cases and “wouldn’t
it be nice if...”

• So – our parking machine software is now required by
the Betatown county – but with a twist 

CS@AU Henrik Bærbak Christensen 5

New requirement

• Betatown:

• Maybe we will see future changes

in pricing models ???

• How can we handle these two

products?

“New progressive price model”

The present code

• This is the spot where things may change:

variability point

CS@AU Henrik Bærbak Christensen 7

Exercise !

• Propose some models to handle this issue

CS@AU Henrik Bærbak Christensen 8

• Consider:

– Most of the code is the same in the

two products

– What about real success? 20

product variants?

• Focus:

– Sketch several models, not just an

“optimal” one.

– Read the book? Find a fifth model!

Analysis

• Model 1:

– Source code copy proposal: Make a copy of the source tree

• Model 2:

– Parameterization proposal: Throw in some ‘if’-statements

• Model 3:

– Polymorphic proposal: Variation through inheritance

• Model 4:

– Compositional proposal: Factor out rate model responsibility

CS@AU Henrik Bærbak Christensen 9

Model 1: Source Code Copy

Widely used: Next generation software

Model 1: Source tree copying

• Idea: Deep copy production code source tree

• Code the new variant by replacing

the code at the variability point.

CS@AU Henrik Bærbak Christensen 11

Benefits

• Benefits:

– It is simple!

• no special skill set required in developer team

• easy to explain idea to new developers

– It is fast!

• < 5 minutes?

– It provides perfect variant decoupling

• defects introduced in variant 2 does not reduce reliability of variant 1

• easy to distinguish variants (consult folder hierarchy)

CS@AU Henrik Bærbak Christensen 12

Liabilities

• Liabilities:

• Multiple maintenance problem 

– Changes in common code must be propagated to all copies

– Usually manual process (or tedious SCM operation)

CS@AU Henrik Bærbak Christensen 13

New code here …

Identical code copies!
Bugs here must be fixed in

N different places!!!

Liabilities

• Liabilities:

• Multiple maintenance problem 

– Changes in common code must be propagated to all copies

– Usually manual process (or tedious SCM operation)

• Example:

– 8 pay station variants (different rate policies)

– request: pay station keeps track of earning 

• Experience: Variants drift apart, becoming different

products instead of variants...

CS@AU Henrik Bærbak Christensen 14

Liabilities

• If you have many copies you easily get mixed up

– thus the benefit of easily identifying which variant you are working

on is actually not true

• Example:

– Fixing the same bug in 5 nearly identical SAVOS production code

bases at the same time 

CS@AU Henrik Bærbak Christensen 15

Model 2: Parametric Solution

Perhaps the most Common in the book

Parametric

• Idea:

– It is only a single “behavioural unit” in the addPayment method

that varies

– I can simply make a conditional statement there

• A) Introduce a parameter (Which town are we in?)

• B) Switch on that parameter, each time town specific

behaviour is needed.

CS@AU Henrik Bærbak Christensen 17

Code View

CS@AU Henrik Bærbak Christensen 18

Instantiation

• Of course – we now have to specify which variant of the

pay station to use

– Either AlphaTown or BetaTown

• Defined by the constructor parameters:

– Here for ‘AlphaTown’

CS@AU Henrik Bærbak Christensen 19

Benefits

• Benefits:

– Simple

• A conditional statement is one of the first aspects learned by

programmers, used widely, and thus easy to understand for any skill

level developer team

– Avoid multiple maintenance problem

• Yeah!!! Common defects/requirements are handled once and for all.

CS@AU Henrik Bærbak Christensen 20

Liabilities

• Liabilities:

– Reliability concerns

– Readability concerns

– Responsibility erosion

– Composition problem

CS@AU Henrik Bærbak Christensen 21

Analysis

• Reliability/quality problem
– Each time we must add a new rate model (sell in a new town) we

must add code to the existing PayStationImpl class.

– This means potential of introducing errors in old code.

– This means complete regression testing (and test case review) of
all product variants!

– Change by modification is costly !!!

CS@AU Henrik Bærbak Christensen 22

Analysis

• Reliability/quality problem
– Actually our pay station case is the easiest one: only one ‘switch’!

– Consider a big system in which there are 83 places where we
switch on the town parameter

• Or – was it 84 places ???

– Change by modification is costly !!!

CS@AU Henrik Bærbak Christensen 23

Analysis

• Readability: Code bloat

– If we must handle 43 different price models, then the

switching code becomes long and winding, and the original

algorithm almost drowns...

• Switch creep

– Throwing in “if” often leads to more “if”

if (Town == ALPHATOWN) {

 if (databaseServer == ORACLE && optimizingOn){

 if (DEBUG) { System.out.println(“...”); }

 ...

 } else { if (isMobilePayment()) {

 discountFactor = 0.9;

 XXX

} else { ... }

Tell me what options are set in

the XXX code ? Difficult, huh?

CS@AU Henrik Bærbak Christensen 24

Analysis

• Responsibility erosion (“feature creep”)

– Let us review what the responsibilities of the pay station really are

now:

<<interface>>

PayStation

Responsibility

1. Accept payment

2. Handle transactions

3. Know time bought

4. Print receipt

5. Handle variations for Alphatown and Betatown

Wait a few month and

the machine is also responsible for

parsing JSON files, printing

debug statements in the

console, updating a database, and

handle transactions over

MobilePay and EasyPark!

CS@AU Henrik Bærbak Christensen 25

AntiPattern: The Blob

Feature Creep Visually ☺

CS@AU Henrik Bærbak Christensen 26

Feature Creep Visually ☺

CS@AU Henrik Bærbak Christensen 27

Analysis

• Composition problem

– A rate model that is a combination of existing ones leads to code

duplication [can be avoided by making private methods in the

class]

– Example of much worse situation will be dealt with later...

CS@AU Henrik Bærbak Christensen 28

Conditional compilation

• In C and C++ you may alternatively use #ifdef’s

• The analysis is basically the same as for
parameterization, except that there is no performance
penalty --- but choice of which model to be used cannot
be made at run-time.

• Note: Embedded software where memory footprint of
code is important this may be the solution far
superior to a pattern based solution!

CS@AU Henrik Bærbak Christensen 29

Example

CS@AU Henrik Bærbak Christensen 30

Example

• Data from ”reality”

– 600.000 lines of C++

• 1.300 classes

• 2.400 files

– 60.000 staff-days for development

– 3 sites of development

• 432 parameters (”compile-flags”) must be set to

determine the specific variant of the product

– All defined in a make-file (~ build.gradle)

CS@AU Henrik Bærbak Christensen 31

Model 2: Summary

• It is tempting!

– it is easy - ½ minute in the editor, compile, done!

– the first ‘if’ is easy to overview, understand, and get correct

– but it should turn on the alarm bell !

CS@AU Henrik Bærbak Christensen 32

Model 3: Polymorphic Solution

Still widely used, but…

Give a man a hammer and the world

will seem to consist purely of nails…

Model 3: Polymorphic

proposal
• Subclass and override!

CS@AU Henrik Bærbak Christensen 34

Proposal 3: Polymorphic

Instantiation:

 PayStation ps =

 new PayStationProgressiveRate();

CS@AU Henrik Bærbak Christensen 35

Formulation using abstract

• In OO languages like Java, you can make a ‘template’

superclass, an abstract class, deferring method

implementations to the subclasses

CS@AU Henrik Bærbak Christensen 36

Code View

CS@AU Henrik Bærbak Christensen 37

abstract tells us that some
methods needs to be defined

in the subclass.
You cannot make an instance

of an abstract class!

Code View

CS@AU Henrik Bærbak Christensen 38

AlphaTown = Linear

BetaTown =
Progressive

Exercise

• Why is it not possible to make an instance of an abstract

class?

CS@AU Henrik Bærbak Christensen 39

Analysis

Pros and Cons of

inheritance based design of

our variable pricing

Analysis

• Benefits

– Avoid multiple maintenance

– Reliability concern

– Code readability

• Liabilities

– Increased number of classes

– Inheritance relation spent on single variation type

– Reuse across variants difficult

– Compile-time binding

CS@AU Henrik Bærbak Christensen 41

Benefits

• ☺ Reliability concern
– The first time I add a new rate policy I change by modification!

• I have to refactor the code to introduce the new private method
calculateTime

• But
– All following new requirements regarding rate policies can be

handled by adding new subclasses, not by modifying existing
classes.

– Thus, no fear of introducing defects in existing software; no
regression testing, no reviews.

• Change by addition, not by modification

CS@AU Henrik Bærbak Christensen 42

Benefits

• ☺ Readability

– There is no code bloating from introduction conditional

statements

– I simply add new classes instead

CS@AU Henrik Bærbak Christensen 43

Liabilities

•  Increased number of classes

– I have to add one new class for each rate policy variant

– thus instead of 43 if statements in one class I get 43 subclasses

to overview

CS@AU Henrik Bærbak Christensen 44

Liabilities

•  Spent inheritance on single variation type

– You have “wasted” your single implementation-inheritance

capability on one type of variation!

• The name is odd – isn’t it? The parameter is part of the name

“PayStationProgressiveRate”

• What is next:

• “PayStationProgressiveRateButLiniarInWeekendsWithOracleDataBa

seAccessDebuggingVersionAndBothCoinAndMobilePayPaymentAnd

EasyParkOptions” ???

– We will discuss this problem in detail later...

CS@AU Henrik Bærbak Christensen 45

Liabilities

 Inheritance is a compile time binding

– Inheritance is a compile time binding !!!

• you literally write “extends / :” in your editor !!!

– Thus you cannot change rate model except by rewriting code!

• Sorts of similar to “change by modification ☺”

– And it is completely impossible to dynamically change rate policy

at run-time or at start-up time.

CS@AU Henrik Bærbak Christensen 46

Liabilities

•  Reuse across variants is difficult

– Gammatown

• “We want a rate policy similar to Alphatown during weekdays but

similar to Betatown during weekends.”

– but some code is in one superclass and some in another

subclass...

– combining them will lead to a pretty odd design

– or I have to refactor into an abstract superclass that contains the

rate policies... But what do they do there?

CS@AU Henrik Bærbak Christensen 47

Model 5: Generative Solution

The masked ‘source code copy’

approach

Weaving

• Source code divided into

– Template code with “holes”

– Code fragments that fit the holes

• A set defined by the fragments that define a variant

• Weaving

– Merge(template, fragment set) => source

• Now you can compile the variant source code.

• Example: FMPP used in generating source code for the

book in two variants: download or in-book listings

CS@AU Henrik Bærbak Christensen 49

Example: PayStation.java

A ”hole”

CS@AU Henrik Bærbak Christensen 50

Weaving

• Examples

– Maven archetype

– AspectJ – aspect oriented programming

– FMPP that handles aspects of my book’s code

– SpecFlow: BDD framework

CS@AU Henrik Bærbak Christensen 51

My experience

• This type systems pops up again and again

– Maven archtype is the newest I know of…

• It is basically source-code-copy over again

– But with some tooling support to avoid multiple maintenance problem

• However

– It stinks! Why?

– Because the executing code differs from what I see in my editor!

• We short-circuit our power of reasoning => BUGS!

– Morale: Avoid it if possible…

– But it is not always possible.
• I use it for my book’s code – I have no other option (except manual source code copy –

yikes…)

CS@AU Henrik Bærbak Christensen 52

Exercise Break

Before we go into model 4

Exercise 1

• Which variability technique is used here?

CS@AU Henrik Bærbak Christensen 54

Polymorphic?
Parametric?

Both?

Exercise 2

• A fridge reads

temperature and

displays

frequency of fan

• Variability

– Temp sensor

type

– Display type

CS@AU Henrik Bærbak Christensen 55

Parametric? Polymorphic?
Both?

Model 4: Compositional Solution

A fresh and new look at the problem

Proposal 4: Composition

Golden rule: No abstraction should have too many

responsibilities. Max three is a good rule of thumb…

(Facade objects are an exception)

Serving too many responsibilities

• The reason that we have to modify code to handle the

new requirement instead of adding code is because:

• The change revolves around a

responsibility (calculate parking time) that

is buried within an abstraction and

mixed up with many other responsibilities

(print receipt, handle buy, etc.) !!!

• So: What do we do???

CS@AU Henrik Bærbak Christensen 58

Divide responsibilities - compose them

• A proposal is simply to

Put the responsibility in its own abstraction / object

CS@AU Henrik Bærbak Christensen 59

Delegation

• The basic principle is simple but powerful:

– Instead of one object doing it all by itself, it asks

another object to help out. Some of the job is handled

by another “actor” – the delegate

• This principle has a name:

CS@AU Henrik Bærbak Christensen 60

Concrete behaviours

• Responsibilities must be served by concrete behaviour in

objects...

CS@AU Henrik Bærbak Christensen 61

Code View

CS@AU Henrik Bærbak Christensen 62

Behaviour

CS@AU Henrik Bærbak Christensen 63

Exercise

• The pay station needs to know which rate strategy object

to use, of course!

• How do we tell it ???

CS@AU Henrik Bærbak Christensen 64

Choosing pricing

• Several possibilities

– Constructor

– Set-method

– Creational patterns (later on☺)

CS@AU Henrik Bærbak Christensen 65

Exercise

• What are the benefits and liabilities of

– Using the constructor to define the strategy?

– Using a set-method to define the strategy?

CS@AU Henrik Bærbak Christensen 66

Analysis

• Constructor

– Compiler will tell you that you have forgotten to make it!

• Much less cost than letting the customer find out !!!

– Early binding that cannot be changed at run-time

• Set-method

– You will forget to set it !!!

– ... but you can change your mind at run-time !

• (at least for stateless objects like strategy objects...)

CS@AU Henrik Bærbak Christensen 67

Analysis

• Benefits

– Readability

– Run-time binding

– Separation of responsibilities

– Variant selection is localized

– Combinatorial

• Liabilities

– Increased number of interfaces, objects

– Clients must be aware of strategies

CS@AU Henrik Bærbak Christensen 68

Analysis

• ☺ Readability

– no code bloat of conditional statements

• ☺ Run-time binding

– I can actually change the rate policy while the system is

running. Leads to lower maintenance costs as no shut down

required

CS@AU Henrik Bærbak Christensen 69

Benefits

• ☺ Responsibilities clearly stated in interfaces

– Leads to No Odd Naming:

– PayStation and RateStrategy: The responsibilities

– LinearRateStrategy ect: Concrete behaviour fulfilling

responsibilities

– The pay station has “lost some fat”

• by separating responsibilities the cohesion of the code within each

abstraction is higher

• Note though that from the GUI/hardware’s perspective, the pay

station still has the ‘formal’ responsibility to calculate rates!

CS@AU Henrik Bærbak Christensen 70

Benefits

• ☺ Variant selection localized

– There is only one place in the code where I decide which rate

policy to take

• namely in the configuration/main code where I instantiate the pay

station!

– contrast to the parametric solution where selection and decision

code is smeared all over the place

– No variant handling code at all in the pay station code !

CS@AU Henrik Bærbak Christensen 71

Benefits

• ☺ Combinatorial

– I have not used inheritance – we can still subclass it to provide

new behavior on other aspects – without interfering with the rate

calculation!

– But – much more on that later...

CS@AU Henrik Bærbak Christensen 72

Liabilities

• Increased number of objects

– Similar to the polymorphic solution you ‘trade’ complexity within

the code (many if’s handling variants) with complexity outside the

code

• Instead you have many RateStrategy implementations to overview

• Clients must be aware of strategies

– Never ever instantiate the strategies within the Context object

(here the PayStationImpl)

• (Argue why it has all the liabilities of the parametric approach!)

– Thus the client (the one instantiating the Context) must be aware

of the particular strategy object to pass to the Context

• Thus, this code creates a hard binding between the two…

CS@AU Henrik Bærbak Christensen 73

The 3-1-2 process

So – Pizza from the ingredients ☺

•  We have identified some behavior that is likely to
change…
– rate policies

•  We have clearly stated a responsibility that covers this
behavior and expressed it in an interface:

•  The parking machine now perform rate calculations by
letting a delegate object do it: the RateStrategy object.
– time = rateStrategy.calculateTime(amount);

<<interface>>

RateStrategy

-- Calculate Parkingtime

CS@AU Henrik Bærbak Christensen 75

The 3-1-2 process

• I call this “mini-process” of handling variability for the 3-1-

2 process

• The reason for the odd numbering is its relations to the

compositional design principles that were first put forward

in the Design Pattern book (GoF) by Gamma et al. /

Chapter 1.6

• The number refer to the sequence in the GoF book that

the principle is mentioned.

CS@AU Henrik Bærbak Christensen 76

Transferring responsibilities

• Actually this is a common thing in everyday life

• Many years ago I transferred the responsibility to empty

the garbage can to my eldest son

– (not without some heated arguments though ☺)

• I delegate correcting HotStone exercises to my TAs

• Project leaders’ main responsibility is – to delegate

responsibility to other people

• And why? Because

– A) we cannot do everything ourselves and

– B) too many responsibilities leads to stress and errors!

CS@AU Henrik Bærbak Christensen 77

Key technique: Delegation

• In software this simple technique ”let someone else do

the dirty job” is called delegation.

• Instead of an object doing it itself:

– time = this.calculateTime(amount);

– this.takeGarbageToGarbageCan();

• we let some specialist object do it for us:

– time = rateStrategy.calculateTime(amount);

– son.takeGarbageToGarbageCan();

CS@AU Henrik Bærbak Christensen 78

Conclusion

• We have derived

the strategy pattern

by analysing

our problem in a

certain way!

CS@AU Henrik Bærbak Christensen 79

Terminology

• Strategy defines three roles:

• Client, Context and Strategy

Summary

• From the ingredients

–  identified behaviour likely to change

–  express responsibility for behaviour as interfaces

–  use delegation to support behaviour

• we have derived a pattern automagically ☺

• This is the nuts and bolts for most (behavioural) patterns !

CS@AU Henrik Bærbak Christensen 81

